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First we give necessary and sufficient conditions on a set of intervals El=
� l

j=1 [.2j&1 , .2j], .1< } } } <.2l and .2l&.1�2?, such that on El there exists a
real trigonometric polynomial {N(.) with maximal number, i.e., N+l, of extremal
points on El . The associated algebraic polynomial TN(z)=zN�2{N(z), z=ei., is
called the complex Chebyshev polynomial. Then it is shown that polynomials
orthogonal on El have periodic reflection coefficients if and only if they are
orthogonal on El with respect to a measure of the form - &>2l

j=1 sin((.&.j)�2)�
A(.) d.+ certain point measures, where A is a real trigonometric polynomial
with no zeros on El and there exists a complex Chebyshev polynomial on El . Let
us point out in this connection that Geronimus has shown that orthogonal polyno-
mials generated by periodic reflection coefficients of absolute value less than 1 are
orthogonal with respect to a measure of the above type. Furthermore, we derive
explicit representations of the corresponding orthogonal polynomials with the help
of the complex Chebyshev polynomials. Finally, we provide a characterization of
those definite functionals to which orthogonal polynomials with periodic reflection
coefficients of modulus unequal to one are orthogonal. � 1996 Academic Press, Inc.

1. NOTATION

Let (an) be a given sequence of complex numbers with |an |{1 for
n # N0 , N0=[0, 1, 2, . . .], and let a monic sequence of polynomials Pn(z)=
zn+ } } } be generated by the recurrence relation

Pn+1(z)=zPn(z)&a� nPn*(z), (1.1)
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where Pn*(z) :=znP� n(1�z) denotes the reciprocal polynomial of Pn . Then it
is known that the polynomials Pn are orthogonal with respect to a definite
linear functional L, i.e.,

L(x&jPn)=0 for j=0, ..., n&1, (1.2)

where L is defined on the set of Laurent polynomials and has the property
that L(x&j)=L(x j ) for j # N0 . Let us recall that by the definiteness the
moments

cj :=L(x&j ), j # Z, (1.3)

satisfy the condition

det \
c0

c1

b

cn

c&1

c0

b

cn&1

} } }
} } }
. . .
} } }

c&n

c&n+1

b

c0
+{0 for all n # N0 . (1.4)

Conversely, if a definite functional L is given whose moments cj satisfy the
conditions that c&j=c� j # C and ��

j=0 cjz j converges in a neighbourhood of
z=0, then note that in this case

L \x+z
x&z+=c0+2 :

�

j=1

cj z j,

then there exists a uniquely determined sequence of monic polynomials
Pn(z)=zn+ } } } such that (1.2) holds and the orthogonal polynomials Pn

satisfy a recurrence relation of the form (1.1). The so-called Schur
parameters or reflection coefficients (an) are given by the relation

an=
L(xPn)

L(x&nPn)
=&Pn+1(0) # C, (1.5)

which have, by the definiteness of L, the property that |an |{1 for all
n # N0 .

Next let us assume that the given sequence of complex numbers (an)
satisfy the stronger condition

|an |<1 for n # N0 , (1.6)

which is equivalent to the fact that the determinants in (1.4) are all greater
than zero (see e.g. [9, p. 5]). Then it is known that the orthogonal poly-
nomials are even orthogonal with respect to a distribution function _ (as
usual, a function _ is called the distribution function if it is real, bounded,
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and nondecreasing with an infinite set of points of increase), i.e., (1.2) takes
the form

1
2? |

2?

0
e&ij.Pn(ei.) d_(.)=0 for j=0, ..., n&1. (1.7)

Let us note that the Stieltjes transform F defined by

F(z) :=
1

2?c0
|

2?

0

ei.+z
ei.&z

d_(.)=
1
c0 \c0+2 :

�

j=1

cjz j+
=

1
c0

L \x+z
x&z+ , |z|<1, (1.8)

is a Carathe� odory function, abbreviated as C-function, i.e., F is analytic on
|z|<1 with positive real part there and F(0)=1.

In what follows the polynomials of the second kind of a polynomial Q
with respect to a linear functional L, defined by

L \x+z
x&z

(Q(x)&Q(z))+ if �Q>0

and L(1) Q(0) if �Q=0,

where L acts on x, will play an important role, in particular those monic
polynomials of the second kind corresponding to Pn orthogonal with
respect to the definite functional L, which are denoted by

0n(z) :={
1
c0

L \x+z
x&z

(Pn(x)&Pn(z))+ , if n # N
c0=L(1) (1.9)

1, if n=0,

Note that by the definiteness of the functional L the polynomial 0n is of
exact degree n. Let us point out that, in view of (1.1) and (1.9), the 0n 's
satisfy the recurrence relation

0n+1(z)=z0n(z)+a� n0n*(z), n # N0 , (1.10)

i.e., the reflection coefficients an in (1.1) are replaced by &an . Furthermore
the Pn 's and 0n 's are related by

Pn*(z) 0n(z)+Pn(z) 0n*(z)=2dnzn with dn= `
n&1

j=0

(1&|aj |
2). (1.11)
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Finally, let us also introduce the & th, & # N0 , associated monic polynomials
(P (&)

n ) and (0 (&)
n ) of (Pn) and (0n), respectively, with respect to the definite

linear functional L by the following shifted recurrence relation (1.1),
resp. (1.10),

P (&)
n+1(z)=zP (&)

n (z)&a� n+&P (&)
n *(z), n # N0 , P (&)

0 (z)=1 (1.12)

0 (&)
n+1(z)=z0 (&)

n (z)+a� n+&0 (&)
n *(z), n # N0 , 0 (&)

0 (z)=1, (1.13)

where the an 's are the reflection coefficients from (1.1) corresponding to L.
We will denote P(0)

n by Pn and 0 (0)
n by 0n . These associated polynomials

have been investigated in detail by the first author in [17]. For the follow-
ing we will need the fact that the Carathe� odory function associated with
(P (&)

n ) and denoted by F (&) has a representation of the form (cf. [17,
Theorem 3.1]; see also [9, Theorem 18.2])

F (&)(z)=
F(z)(P&(z)+P&*(z))+(0&(z)&0&*(z))
F(z)(P&(z)&P&*(z))+(0&(z)+0&*(z))

, F (&)(0)=1. (1.14)

Let us give some relations between the associated polynomials and the
original polynomials from (1.1) and (1.10), which can be seen by simple
induction-arguments (for the positive-definite case, i.e., |an |<1, these iden-
tities have been first shown in [17, Theorem 3.1 and Corollary 3.1]),

2Pn+&=(P&+P&*) P (&)
n +(P&&P&*) 0 (&)

n (1.15)

20n+&=(0&&0&*) P (&)
n +(0&+0&*) 0 (&)

n (1.16)

2P (&)
n =

1
d&z& [Pn+&(0&+0&*)&0n+&(P&&P&*)] (1.17)

20 (&)
n =

1
d&z& [0n+&(P&+P&*)&Pn+&(0&&0&*)], (1.18)

where n, & # N0 and where d& is from (1.11).
In addition we will need the following notation. We write H(z)=O(zm),

m # N0 , if H is analytic at z=0 with a series expansion at z=0 of the form
H(z)=��

j=m hjz j. If hm {0 we write H(z)=O4 (zm).
Further, if Q is a polynomial of exact degree �Q�n, we define the

modified reciprocal polynomial Qn
(*) by

Qn
(*)(z) :=znQ� \1

z+=zn&�QQ*(z). (1.19)

Note that the exponent n of z in (1.19) is equal to the subindex on the left-
hand side and that for the modified reciprocal polynomial the index n must
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be written explicitly. The reason why we distinguish between the modified
reciprocal polynomial Qn

(* ) and the reciprocal polynomial Q* is that
Qn

(*)(0)=0 is possible (if �Q<n) whereas Q*(0) is always different from
zero.

We call a polynomial Q of degree �Q�n selfreciprocal if it satisfies

Q=+Q*, resp., Q=+Qn
(*), where |+|=1.

Finally, we denote the space of complex algebraic polynomials of degree
�n by Pn and the space of real trigonometric polynomials of (integer or
half-integer) degree �n�2 by

6n�2 :={ :
wn�2x

k=0

ak cos \n&2k
2

.++bk sin \n&2k
2

.+ : ak , bk # R= .

We say D # 6n�2 is of exact degree �D=n�2, if |a0 |+|b0 |{0. As usual let
P denote the set of all algebraic and 6 the set of all real trigonometric
polynomials. The polynomials from P and 6 are assigned to each other
by the following well known relation: If D is a selfreciprocal algebraic
polynomial then

D(.) :=e&i(�D�2) .+1�2D(ei.)

is a real trigonometric polynomial of degree �D=�D�2 and vice versa.

2. PRELIMINARY CONSIDERATIONS AND
FURTHER NOTATIONS

Polynomials orthogonal on the unit circle having reflection coefficients
(an) with

lim
n � �

an=0, (2.1)

in particular, those satisfying the stronger Szego� condition

:
�

n=0

|an | 2<�,

have been investigated in detail, see e.g. [9, 24]. Let us note that (2.1)
corresponds, roughly speaking, to the case that the measure is supported
on [0, 2?]. For the case of one interval of the form [:, 2?&:] which
corresponds, again roughly speaking, to the condition

lim
n � �

an=a, where |a|<1, (2.2)
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information about the behavior of the orthogonal polynomials, the measure,
etc., is also available (see Akhiezer [1], Geronimus [6], and Golinskii,
et al. [11]). Naturally the question arises as to what can be said on the
reflection coefficients and the behavior of the orthogonal polynomials if the
measure is supported on several intervals or, taking a look at (2.2), what
can be said on the orthogonality measure if the reflection coefficients are
asymptotically N th periodic, i.e.,

lim
n � �

anN+j=a~ j for j=0, ..., N&1,

where |a~ |<1 for j=0, ..., N&1, (2.3)

and whether these two questions are related to each other. To be able to
handle these questions we first have to understand what is going on in the
simplest case, i.e., when the reflection coefficients are purely periodic from
a certain index onward,

an+N=an for n�n0 with |an |<1 for n # N

and an 0&1+N {an 0&1 . (2.4)

Using continued fractions, Geronimus [8] determined the absolutely
continuous part of the measure with respect to which polynomials with
periodic reflection coefficients 0<|an |<1 are orthogonal. Let us briefly
demonstrate how to get Geronimus' results [8] in a simple way without
using continued fractions. Let (an) be a sequence satisfying (2.4), let (Pn)
be the monic orthogonal polynomials, and let F be the C-function
associated with (an). Since by (1.12), (1.13), and property (2.4)

P (n)
j #P (n+N)

j and 0 (n)
j #0 (n+N)

j for all j # N and all n�n0 ,

we have by (1.14)

F (n)#F (n+N) for n�n0

or written down explicitly,

F(Pn+Pn*)+(0n&0n*)
F(Pn&Pn*)+(0n+0n*)

=
F(Pn+N+P*n+N)+(0n+N&0*n+N)
F(Pn+N&P*n+N)+(0n+N+0*n+N)

.

Solving this equation yields

F1, 2=
\B� (n)+- R� (n)

\A� (n)

, n�n0 , (2.5)
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with

A� (n)=2(PnP*n+N&Pn*Pn+N)

B� (n)=Pn*0n+N&0n*Pn+N&0nP*n+N+Pn0*n+N (2.6)

R� (n)=B� 2
(n)+2A� (n)(0n0*n+N&0n*0n+N).

By forward calculation and using (1.1), (1.10), and (2.4) we get

A� (n) A� (n0)

(2.7)

B� (n)==zn&n 0 `
n&1

j=n0

(1&|aj |
2) } {B� (n0) ,

C� (n) C� (n0)

R� (n)=z2(n&n0) `
n&1

j=n 0

(1&|aj |
2)2 } R� (n 0) .

Thus we obtain by choosing the ``positive'' function in (2.5)

F=
B� (n0)+- R� (n 0)

A� (n0)

. (2.8)

Furthermore, we have by (2.6) that A� (n0) , B� (n0) , and R� (n 0) are selfreciprocal
polynomials, where it can be shown that all the zeros of R� (n0) lie on the
circumference |z|=1, and, what is important in what follows, that by the
third relation in (2.6)

B� (n0)(zj)=*j - R� (n0)(zj) (2.9)

at the zeros zj of A� (n 0) , where *j # [&1, +1]. For simplicity let us consider
now the case n0=0, i.e., the case when there is no preperiod. Instead of
R� (0) , A� (0) , B� (0) let us write R� , A� , B� . By (2.6) we have

R� =R� * and A� =&A� *, (2.10)

thus e&iN.R� (ei.) and ie&i(N�2) .A� (ei.) are real trigonometric polynomials.
Let now El :=[.: e&iN.R� (ei.)�0]=: � l

j=1 [.2j&1 , .2j] be a subset of an
interval of length 2? which consists of l, l�N, intervals. It can be shown
(compare (1.7) and (2.13) below) that

ie&i(N�2) .A� (ei.)= `
N

k=1

sin \.&!k

2 + # 6N�2 , (2.11)

where there is an odd number (counted according to their multiplicities) of
!k 's in each interval [.2j , .2j+1], j=1, ..., l, .2l+1 :=.1+2?. If we further
assume that all the zeros of A� are simple we obtain by [19, Theorem 2.1])
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B� (z)+- R� (z)
A� (z)

= :
l

j=1

(&1) j |
. 2 j

. 2 j&1

ei.+z
ei.&z

- &e&iN.R� (ei.)
ie&i(N�2) .A� (ei.)

d.

&
1
2

:
N

j=1

(1&*j)
ei! j+z
ei! j&z

e&i! j
- R� (ei! j)
A� $(ei!j)

=|
El

ei.+z
ei.&z }

- R� (ei.)
A� (ei.) } d.&

1
2

:
N

j=1

(1&*j)

_
ei! j+z
ei!j&z

e&i! j
- R� (ei! j)
A� $(ei! j)

, (2.12)

where *j # [&1, +1] for j=1, ..., N is given by (2.9). Let us point out
that in the last equation we have used the fact that the real trigonometric
polynomial ie&i(N�2) .A� (ei.) changes sign from interval (.2j&1, .2j) to interval
(.2j+1, .2j+2), j=1, ..., l&1. Furthermore, we see by (2.8) and (2.9) that
an appearance of a point measure only depends on the fact of whether
B� (ei! j ) interpolates +- R� (ei!j ) or &- R� (ei! j ). This appearance, resp. non-
appearence, of a point measure becomes clear when we take a look at the
left-hand side in (2.12) and recall that the first term in the last equality in
(2.12) is a function analytic outside [ei.: . # El].

An analog representation as in (2.12) also holds if n0>0 or if A� (n0) has
multiple zeros. Hence, the orthogonal polynomials with periodic reflection
coefficients from a certain index n0 onward are orthogonal with respect to
a measure whose absolute continuous part is of the form

}- R� n0
(z)

A� n0
(z) }=- &e&i(N+2n0) .R� n 0

(ei.)
|ie&i((N�2)+n0) .A� n0

(ei.)|

=:
- &R� (.)

|A� (.)|
for . # Int(El), (2.13)

and 0 otherwise, where R� and A� are real trigonometric polynomials. Since
the function in (2.13) is integrable it can be derived that R� and A� have to
be of the form

R� (.)=u2(.) V (.) W (.) and A� (.)=u(.) V (.) A(.),

with u, V, W, A # 6,

where u vanishes exactly in those points from Int(El) where R� vanishes
(note that the weight function in (2.13) does not change sign), and where
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the zeros of V, which have to be boundary points of El , are the common
zeros of R :=V } W and A� . Thus the weight function (2.13) takes the form

�&
W (.)
V (.)

1
|A(.)|

= } W (.)

A(.) - R(.) } for . # El and zero otherwise,

(2.14)

where A has now no zero on El and where (as we will see e.g. in Lemma 4.2)
R # 6l .

What about the converse direction, i.e., do polynomials which are ortho-
gonal on several arcs with respect to a weight function of the form (2.14)
have periodic reflection coefficients? It will turn out that this does not hold
in general and that this periodic property depends only on the set El . The
characterization of such sets of intervals El , which is carried out in
Section 3, will be a main point of this paper. For the description we intro-
duce the so-called complex Chebyshev polynomials (abbreviated as complex
T-polynomials), which are closely related to trigonometric polynomials
which deviate least from zero on El with respect to the maximum-norm
and have maximal number of equi-oscillation points on El . These complex
T-polynomials enable us to give a simple description of those intervals
where polynomials orthogonal with respect to a weight function of the
form (2.14) have periodic reflection coefficients. Why is this important? It
is important in the description of the asymptotic behaviour of general
orthogonal polynomials on such sets El . Indeed, since the degree of the
polynomial A� (n0) in (2.8), resp. the degree of A in (2.14), is arbitrary we
shall expect that all weight functions on El which can be approximated
sufficiently well by weight functions of the form (2.14) will have reflection
coefficients which are not pure but are asymptotically periodic. Further, we
shall expect that the asymptotic behavior of these orthogonal polynomials
can be described with the help of those polynomials orthogonal with
respect to a weight function of the form (2.14). For those last-mentioned
polynomials, a simple closed formula will be derived in Section 4. The
above-described application to asymptotic representations of orthogonal
polynomials with asymptotically periodic reflection coefficients will be
given in a forthcoming paper [21]. For polynomials orthogonal on the real
line the corresponding questions above have been investigated by the first
author in [15].

Let us also point out that the asymptotic behavior of polynomials
orthogonal on very general sets of the complex plane as on arcs and
Jordan curves have been studied by Widom [25]. The problem is however
that if Widom's nice asymptotic formula is not entirely explicit, it is
assumed that the solution of a certain so-called Jacobi inversion problem
is known. Aptekarev [3] tried to overcome this difficulty by using
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Riemann theta functions. But still it is often difficult to use and work with
these asymptotic formulas. Nevertheless, as one of the referees pointed out,
it might be possible to prove with the help of Widom's result (compare
with Aptekarev's idea in [3] and see also [16, Remark 2.6(a) and
Corollary 3.2]) that the reflection coefficients are pseudo-periodic if and
only if the harmonic measure at � of each arc is a rational number.
Finally, let us note that our approach, developed in [19, 21], is completely
different from those in [3, 25].

Since we want to characterize all functionals which generate orthogonal
polynomials with periodic reflection coefficients (an), not only those with
|an |<1, we have to consider the functionals L( } ; A, W, *) defined in
(2.26) below, which were already investigated by the authors in [19]. By
the way, to get a characterization of orthogonal polynomials with respect
to weight functions of the form (2.14) and eventually a point measure at
the zeros of A, it is simpler from a technical point of view to get a charac-
terization of the orthogonal polynomials with respect to the more
complicated looking functions L( } ; A, W, *). For the meaning of the
following somewhat voluminous notations one should keep in mind the
above-derived measures, see (2.11)�(2.14), to which polynomials with periodic
reflection coefficients are orthogonal. Hence, in correspondence with the
above considerations, let us set

El := .
l

j=1

[.2 j&1 , .2j], Int(El) := .
l

j=1

(.2 j&1 , .2 j),
(2.15)

1E l :=[ei.: . # El],

where .1<.2< } } } <.2l and El �[a, a+2?) for an adequate a # R, i.e.,
.2l&.1<2?. To the set El we assign the real trigonometric polynomial
R by

R(.) :=4l `
2l

j=1

sin \.&.j

2 + , (2.16)

which has only simple zeros and vanishes exactly at the boundary points
of El . Further, it satisfies

R(.)<0 on Int(El). (2.17)

As it will turn out, it is helpful to write R as

R(.)=V (.) W (.), V, W # 6 with �V=: v, �W=: w. (2.18)
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Finally, let A # 6 be an arbitrary real trigonometric polynomial which has
no zeros on El and whose degree �A=: a satisfies

a�w&
l
2

and \a+
l
2

&w+ is an integer. (2.19)

In what follows we sometimes need the explicit representation of A, i.e.,

A(.)=cA `
m*

j=1
\sin \.&!j

2 ++
mj

, cA # R"[0], !j � Ej , :
m*

j=1

mj=2a.

(2.20)

Note that the !j 's are either real or they appear in pairs of complex
conjugate numbers, since A is a real trigonometric polynomial.

If W (.)�- |R(.)| is integrable on El , i.e., has poles at most of order 1
2 ,

then we define the integrable function

f (.; A, W) :={
W (.)

A(.) r(.)
, . # El (2.21)

0, . � El ,

where

1
r(.)

:=
(&1) j

- |R(.)|
for . # (.2j&1, .2j), j=1, ..., l. (2.22)

Since we have only assumed that A has no zero on El , the function
f (.; A, W) may have sign changes and is therefore in general no weight
function in the classical sense. Let us consider for example f (.; 1, 1). Then
the orthogonality condition of a polynomial Pn(z) with respect to f (.;1, 1)
reads as

:
l

j=1

(&1) j |
. 2j

. 2j&1

e&ik.Pn(ei.)
d.

- |R(.)|
=|

E l

e&ik.Pn(ei.)
1

r(.)
d.=0

for k=&m~ , ..., n~ &1,

where in view of the sign changes of r(.) it may happen that m~ >0 and
n~ >n. For further examples see [19]. But if sgn A(.)=(&1) j on
[.2j&1 , .2j] as in the derivation of (2.11)�(2.14), then f (.; A, W)
becomes a weight function in the classical sense and is of the form (2.14).
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Let us now define the algebraic selfreciprocal polynomials R, V, W, and
A assigned to the trigonometric polynomials R, V, W, and A in the
natural way by

R(ei.) :=eil.R(.), �R=2l, R=R*,

(2.23)
R(0)=(&1)l exp \ i

2
:
2l

j=1

.j+
V(ei.) :=eiv.V (.), �V=2v, V=V*

W(ei.) :=eiw.W (.), �W=2w, W=W*

and, by technical reasons (compare (2.10)),

A(ei.) :=&ieia.A(.), �A=2a, A=&A*. (2.24)

As in (2.20) let us give the explicit representation of A

A(z)=cA `
m*

j=1

(z&zj)
m j, where cA # C and zj=ei! j. (2.25)

In [19] we studied polynomials orthogonal with respect to the more
general linear functional

L(h; A, W, *) :=
1

2? |
E l

h(ei.) f (.; A, W) d.+G(h; A, W, *) (2.26)

with, recalling the notation in (2.20), resp. (2.25),

G(h; A, W, *) :=&
1
2

:
m*

j=1

(1&*j) :
mj&1

&=0

+j, &(&1)& $ (&)
z j \h(z)

z +
=&

1
2

:
m*

j=1

1&*j

(mj&1)! \
za+l�2&w&1Wh

Aj - R +
(mj&1)

(zj), (2.27)

where *j # [&1, +1], i.e., if *j=&1 then there appears a ``Dirac
mass-point'' at zj , where $ (&)

z j
is defined by $ (&)

zj
(g) :=(&1)& g (&)(zj)�&! and

where the constants +j, & are given by

+j, & :=
1

(mj&1&&)! \
za+l�2&wW

Aj - R +
(mj&1&&)

(zj), Aj (z) :=
A(z)

(z&zj)
m j

.

To be more precise, *=[*1 , ..., *m*] # 2m* , where

2m* :=[(*1 , ..., *m*): *j # [&1, +1] and *j1
=*j2

if zj1
=1�zj2

]. (2.28)
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Hence we described those polynomials Pn of degree n which satisfy the
orthogonality condition

L(x&kPn ; A, W, *)=
1

2? |
El

e&ik.Pn(ei.) f (.;A, W) d.

&
1
2

:
m*

j=1

(1&*j) :
mj&1

&=0

+j, &(&1)& $ (&)
z j

(x&(k+1)Pn)=0

for k=0, ..., n&1. (2.29)

Examples of what kind of ``weight functions'' and orthogonality measures
are covered by the functionals L( } ; A, W, *) are given in [19].

3. COMPLEX T-POLYNOMIALS

We start with the essential

Definition 3.1. Let El and thus R be given by (2.15) and (2.23),
respectively. Let N�l, N # N, and let TN* and U*N&l be selfreciprocal poly-
nomials of degree N and N&l, respectively, where the leading coefficient :
of TN is normalized by |:|=1. If TN and UN&l satisfy

T2
N (z)&R(z) U2

N&l (z)=L2zN, L # R+, (3.1)

where the sign of UN&l is chosen such that TN(0)=- R(0) UN&l (0), then
TN and UN&l are called complex Chebyshev polynomials, abbreviated
by complex T-polynomials, on the set El of the first and second kind,
respectively.

Note that because of the one-to-one relation between the polynomial R
and the set El , the existence of a complex T-polynomial only depends on
the set El . Note further that by the selfreciprocity of TN and UN&l ,

{N(.) :=e&i(N�2) .TN(ei.), uN&l (.) :=e&i((N&l )�2) .UN&l (ei.) (3.2)

are real trigonometric polynomials of degree N�2 and (N&l )�2, respectively,
which satisfy by (3.1)

{2
N (.)&R(.) u2

N&l (.)=L2. (3.3)

The reason why we call the polynomials TN and UN&l complex Chebyshev
polynomials is given a little bit later in Corollary 3.2. Real T-polynomials
have been investigated by the first author in [15, Section 2; 16].
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Remark 3.1. From Definition 3.1 there immediately follows: If TN(z)=
:zN+ } } } is a complex T-polynomial on the set El=� l

j=1 [.2j&1, .2j]
then

T� N(z) :=d N�2Tn( z
d)=zN+ } } } where d=:2�N (3.4)

is a monic complex T-polynomial on the set E� l=� l
j=1 [.2j&1+arg d,

.2j+arg d]=: El+arg d. The corresponding equation (3.1) is of the form

T� 2
N (z)&R� (z) U� 2

N&l (z)=L2zN (the same L as in (3.1)), (3.5)

where R� (z) :=d lR(z�d ) and U� N&l (z) :=d (N&l )�2UN&l (z�d ). On the other
hand, if there exists a monic complex T-polynomial on El , then for all $ # R
there exists a complex T-polynomial on El&$ with leading coefficient
:=ei(N$�2) and again these complex T-polynomials on El and El&$ are
related to each other by an equation of the form (3.4) with d=ei$.

Let us now consider some simple examples.

Example 3.1. (a) On every interval [.~ 1 , .~ 2], .~ 1<.~ 2 and .~ 2&.~ 1�
2?, there exists a complex T-polynomial of degree one. Indeed, let us first
consider E1=[.1 , 2?&.1], 0�.1<?. Then R(z)=z2&2z cos .1+1
and, in view of (3.1),

T1(z) :=z+1 where L2 :=2+2 cos .1>0

is a complex T-polynomial on E1 . Now as a consequence of Remark 3.1,
T� 1(z) :=ei($�2)z+e&i($�2), $ # R, is a complex T-polynomial on the set
E� 1=[.~ 1 , .~ 2], where .~ 1 :=.1&$ and .~ 2 :=2?&.1&$.

(b) On the union of two intervals E2=[.1 , .2] _ [.3 , .4],
.1<.2<.3<.4 , .4&.1<2?, there exists a complex T-polynomial of
degree two if and only if .2&.1=.4&.3 .

Proof. Necessity. Let T2 be a complex T-polynomial on E2 . From
(2.17) and (3.3) it immediately follows that |{2(.)|<L on Int(E2),
|{2(.)|>L outside E2 , and |{2(.j)|=L, j=1, ..., 4. Since {2��and also its
derivative��is a trigonometric polynomial of degree 1, it can have at most
two zeros on [0, 2?); thus we conclude from the above properties of {2 that
the zeros of {2 are simple, say _1 and _2 , where _1 # (.1 , .2) and
_2 # (.3 , .4). Thus the identity (3.3) can be written as

R(.)={2
2(.)&L2

=const } sin2 \.&_1

2 + sin2 \.&_2

2 +&L2, const # R+. (3.6)
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Let ' :=(_1+_2)�2, then we have {2
2('&.)={2

2('+.), i.e., {2
2 is

symmetric with respect to '. Since E2 is exactly that set where R(.)�0,
this means that E2 consists of two intervals of the same length.

Sufficiency. By comparing coefficients in (3.1) and by using the
representation (2.23) of R, defined on the set E2=[.1 , .1+#] _

[.3 , .3+#], where # # R+ is such that .1+#<.3 , .3+#<.1+2?,
one gets that T2(z)=:z2+;z+:� , where :=e&(i�2)(.1+.3+#) and
;=&2 cos(#�2) cos(.1&.3)�2, is a complex T-polynomial on E2 .

For examples treating more general cases (e.g., l>2 or N>l ) the
method of comparing coefficients in (3.1) in order to calculate complex
T-polynomials becomes tedious. But sometimes it is possible to obtain
complex T-polynomials in a simpler way (see Example 3.2 below).

(c) If TN is a complex T-polynomial on El then by (3.1) TmN(z) :=
TN(zm), m # N, is a complex T-polynomial on Eml :=�m&1

&=0 � l
j=1 [(.2j&1+

2&?)�m, (.2j+2&?)�m], i.e., the set El ``appears'' m-times in Eml .

(d) Complex T-polynomials for symmetric arcs can be obtained from
the so-called real T-polynomials on several intervals investigated in [15].
Indeed, let &1<q2<q3< } } } <q2l&1<1 and let CN(x)=xN+ } } } and
DN&l (x)=xN&l+ } } } be real polynomials (so-called real T-polynomials)
such that for all x # [&1, 1],

C 2
N(x)+ `

2l&1

j=2

(x&qj)(1&x2) D2
N&l (x)=const. (3.7)

Setting x= 1
2 (z+z&1) and cos .j :=q2l&j , j=1, ..., 2l&2, we get

((2z)N CN( 1
2 (z+z&1)))2&\& `

2l&2

j=1

(z&ei. j )(z&e&i. j )+
_(i(z2&1)(2z)N&l DN&l (

1
2 (z+z&1)))2=const } z2N,

and thus the polynomials

T2N(x) :=(2z)N CN ( 1
2 (z+z&1)) and

U2N&(2l&2)(z) :=i(z2&1)(2z)N&l DN&l (
1
2 (z+z&1))

are complex T-polynomials on the symmetric set of intervals

E2l&2=[&.1 , .1] _ [.2l&2, 2?&.2l&2] _ .
l&2

j=1

([.2j , .2j+1]

_ [2?&.2j+1, 2?&.2j]).
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Let us point out that, as we have seen in the above examples, not on
every set El of the form (2.15) does there exist a complex T-polynomial.
But on the other hand, every selfreciprocal polynomial T, which has only
simple zeros lying on the unit circumference |z|=1, is a complex T-polynomial
on the set

E(T, L) :=[. # [d, d+2?]: |T (ei.)|�L]

with L�min[ |T (ei.)|: {$(.)=0],

where {(.) is defined as in (3.2) by {(.) :=e&i(�T�2).T (ei.) and where d
is chosen such that |T (eid)|�L. If there are (�T&l ) points �j ,
j=1, ..., (�T&l ), such that {$(�j)=0 and |T (ei�j)|=L, i.e., we have
(�T&l) ``interior'' extremal points of { on E(T, L), then the set
E(T, L)=: El consists of l disjoint intervals (see Fig. 1). In this case that
selfreciprocal polynomial which vanishes exactly at the points ei� j,
j=1, ..., (�T&l ), is the complex T-polynomial of the second kind on El .

By considering the construction of the set E(T, L) one sees that the
same polynomial T can be a complex T-polynomial on different sets
E(T, L), because E(T, L) depends, as indicated by the notation, also on
the value of L.

Next let us show that the complex T-polynomials on a set El have nice
orthogonality properties on El . First we need

Lemma 3.1. Let TN and UN&l be complex T-polynomials of the first and
second kind, respectively. Then there hold:

(a) TN(0){0 and UN&l (0){0.

(b) TN and UN&l have no zero in common.

Figure 1.
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(c) Condition (3.1) is equivalent to the condition

TN(z)&- R(z) UN&l (z)=O4 (zN), |z|<1. (3.8)

Proof. Part (a) is an immediate consequence of �TN=N,
�UN&l=N&l, TN=T*N , and UN&l=U*N&l .

Suppose now that TN and UN&l have a common zero at z0 with z0 {0
by part (a). Thus the left-hand side in (3.1) vanishes at z0 while the right-
hand side is unequal to zero. This is a contradiction and proves part (b).

(c) Necessity. From TN(0)=- R(0) UN&l (0) and TN(0){0, i.e.,
TN(0)+- R(0) UN&l (0){0, we get by (3.1)

(TN(z)&- R(z) UN&l (z))(TN(z)+- R(z) UN&l (z))

=T2
N (z)&R(z) U2

N&l (z)=O4 (zN) (3.9)

and (3.8) follows.

Sufficiency. By (3.9), which now holds because of (3.8), we can write

T2
N(z)&R(z) U2

N&l (z)=LNzN+ } } } +L2Nz2N,

LN , ..., L2N # C, LN {0.

Since the polynomial at the left-hand side is selfreciprocal we get, by
calculating the (modified) reciprocal polynomials at both sides,

T2
N (z)&R(z) U2

N&l (z)=LNzN and LN # R"[0].

It remains to show that LN>0. In the same way as in (3.3) we get

{2
N (.)&R(.) u2

N&l (.)=LN ,

where the left-hand side is positive on Int(El){< (note .1< } } } <.2l)
since R(.)<0 on Int(El). This gives the assertion. K

The following theorem is important in describing and characterizing
complex T-polynomials.

Theorem 3.1. Let r(.) be given as in (2.22) and let TN and UN&l be
complex T-polynomials on El . Then there hold:

(a) TN and UN&l are uniquely determined up to the factor &1 by
Definition 3.1.
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(b) TN and UN&l are orthogonal with respect to 1�r(.) and r(.),
respectively; to be more precise,

|
E l

e&i(l�2+j) .TN(ei.)
1

r(.)
d.=0 for j=&l+1, ..., N&1, (3.10)

|
E l

e&i(l�2+j) .UN&l (ei.) r(.) d.=0 for j=&l+1, ..., N&l&1, (3.11)

and the above orthogonality orders are exact.

(c) All zeros of TN and UN&l are simple and lie on Int(1El ). Further,
TN has at least one zero on each arc of 1El .

Proof. We first give a proof for the case that l is even.
Add (b) and (a). The orthogonality properties follow by the same

methods we used to prove Theorem 3.1 in [20] or by applying (the strong
version of) Theorem 4.1 below, where we set A(z) :=izl�2 # Pl , W :=R,
Pn=UN&l , and use (3.8) to prove (3.11) and [19, Corollary 2.4] to prove
(3.10).

Next let us demonstrate that the above orthogonality order of TN is
exact (the exact orthogonality order of UN&l can be shown in the same
way). Assuming the opposite, then by [20, Theorem 2.1(b)], noting that
TN(0){0, there even holds

|
E l

e&ij.TN(ei.)
d.

r(.)
=0 for j=&

l
2

, ..., N+
l
2

.

But this implies that �El |TN(ei.)| 2 (t(.)�r(.)) d.=0 for each trigonometric
polynomial t(.) of degree l�2, which is not possible by choosing t(.) such
that t(.)�r(.)>0 on Int(El). Hence part (b) is proved. Now by
Lemma 3.1(a) and [20, Proposition 2.2] TN and UN&l are, in the notation
of [20], so-called basic polynomials, which are uniquely determined up to
the factor &1 (note |:|=1). This proves part (a) of the theorem.

Add (c). By the uniqueness and the high orthogonality property of TN

and UN&l there follows from [2, Theorem 8] that all the zeros of TN and
UN&l are simple and have unit modulus. Further, by (2.17) and (3.3) we
have |TN(ei.)|=|{N(.)|�L for . outside El , hence all the zeros of {N are
in Int(El). The fact that {N has at least one zero on each interval of El

holds, because otherwise {N , resp. {$N , would have too many zeros on an
interval of the length 2?.

In addition to the above shown properties it even holds that |{N(.)|>L
outside El , because again in the opposite case {$N would have too many
zeros. From (3.3) we see that uN&l can only vanish at points where
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{2
N(.)=L2. Now the facts that |{N(.)|>L outside El and {$N(.j){0,

j=1, ..., 2l, together with the differentiated equation in (3.3), yield that all
the zeros of uN&l are in Int(El) as well. By (3.2) this proves the theorem
for the case that l is even.

For the case that l is odd we consider the polynomials

R� (z) :=R(z2), T� 2N(z) :=TN(z2), U� 2N&2l (z) :=UN&l (z2).

Then T� 2N and U� 2N&2l are complex T-polynomials on E2l :=[.: e&2il.R(e2i.)
�0], which consists of 2l intervals; compare with Example 3.1(c). Now 2l
is even and all assertions can be obtained from the already proven results
for even l's. K

From Theorem 3.1 a characterization of complex T-polynomials can be
derived. First we need the following notation: Let (ck)k # Z be a given
double-sided infinite sequence of complex numbers satisfying c&k=ck.
Then the value 2 (n)

j ([ck]) is defined by

2 (n)
j ([ck]) :=det \

cj

cj+1

b

cj+n

cj&1

cj

b

cj+n&1

} } }
} } }
. . .
} } }

cj&n

cj+1&n

b

cj
+ , n�0,

and 2 (&1)
j ([ck]) :=1.

Corollary 3.1. There exists a complex T-polynomial TN on a set El if
and only if there holds the following condition (3.12) if l is even and (3.13)
if l is odd.

2 (N&l&1)
0 ([ck]){0 and 2(N&l )

j ([ck])=0

for j=&
l
2

+1, ...,
l
2

&1, (3.12)

where ck :=�El e&ik.r(.) d..

2(2(N&l )&1)
0 ([c~ k]){0 and 2(2(N&l))

j ([c~ k])=0

for j=&l+1, ..., l&1, (3.13)

where c~ k :=�E l e&i(k�2) .r(.) d. if k is odd and c~ k :=0 if k is even.

Proof. We first consider the case that l is even.
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Necessity. Let UN&l (z) = dN & l zN & l + } } } + d0 be the complex
T-polynomial of the second kind on El . Writing down the orthogonality
property (3.11) as a system of equations in terms of the moments (ck), i.e.,

:
N&l

m=0

cj&mdm=0 for j=&
l
2

+1, ..., N&
l
2

&1,

and using the uniqueness of UN&l , i.e., 2 (N&l&1)
0 ([ck]){0, then (3.12)

follows.

Sufficiency. From the system (3.12) one can derive by standard
methods that the rank of the matrix (c&l�2+1 , ..., cN&l�2&1)T is N&l, where
cj :=(cj , cj&1 , ..., cj&(N&l )). Hence, there exists a polynomial U� N&l of
degree N&l such that

|
E l

e&ij.U� N&l (ei.) r(.) d.= :
N&l

m=0

cj&m d� m=0

for j=&
l
2

+1, ..., N&
l
2

&1,

where the d� m 's denote the coefficients of U� N&l . As shown in the proof of
Theorem 3.1, by this high orthogonality property U� N&l is, in the terminology
of [20], a basic polynomial and thus it satisfies U� *N&l=+U� N&l with |+|=1
(see e.g. [20, Proposition 2.2(a)]).

Now we can set A(z) :=izl�2, W :=R, and Pn :=U� N&l , and get by (the
strong version of) Theorem 4.1 below that T� N(z)&- R(z) U� N&l (z)=
O4 (zN), where T� N is a selfreciprocal polynomial of degree N which satisfies
T� *N=+T� N( compare [19, (3.33)] and [20, Proposition 2.2(a)]). Now the
normalization TN :=s+1�2T� N , where s # R"[0] is chosen such that the lead-
ing coefficient of TN has modulus 1, and Lemma 3.1(c) proves the theorem
for the case that l is even.

For the case that l is odd we consider, as in the proof of Theorem 3.1, the
polynomial R� (z) :=R(z2) of degree 4l. Let E� 2l and r~ (.) be the corresponding
set and function from (2.15) and (2.22), respectively. Now by the already
proven part of the theorem we get the characterization (3.13), where the
moments c~ k are given by c~ k=�E� 2l e&ik.r~ (.) d.. Using the fact that
r~ (.)=&r~ (.+?) and r~ (.)=r(2.), . # [0, ?], the moments c~ k can also be
written as in the theorem. K

With the help of Corollary 3.1 we now give a characterization of the
existence of a complex T-polynomial T3 on three and on two arcs (see also
Example 3.1).
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Example 3.2. (a) Complex T-polynomial T3 on three arcs: Let
E3=[.1 , .2] _ [.3 , .4] _ [.5 , .6] be an arbitrary set of the form (2.15)
and let R6(z)=*0+*1z+*2z2+*3z3+*� 2 z4+*� 1 z5+*� 0 z6 be the corre-
sponding selfreciprocal polynomial from (2.23). Then there exists a com-
plex T-polynomial T3 on E3 if and only if

*2
1&4*2*0+4*� 1*2

0=0.

(b) Complex T-polynomial T3 on two arcs: Let the set E2=
[.1 , .2] _ [.3 , .4] and the polynomial R4(z)=*0+*1z+*2 z2+*� 1z3+
*� 0 z4 be given as in (a). Then there exist complex T-polynomials T3 and U1

on E2 if and only if

Im { *1

- *0
={0 and (4*2&8)2+(|*1 | 2&16)2+8Re[*� 0*2

1](6&*2)=28.

Proof. (a) By (3.13) there exists a complex T-polynomial T3 on E3 if
and only if c~ 1=0 where c~ 1=�E 3

e&i(.�2)r(.) d. (note c~ &1=c~ 1). By [20,
Theorem 2.2] (compare also [20, Theorem 3.1]) we get

(1�i) - R6(z2)&86(z)
z3 =

1
2? |

E� 6

ei.+z
ei.&z

r~ (.) d.=c~ 0+2 :
�

k=1

c~ kzk,

where 86 # P6 with 86*=&86 . To be more precise, if we write

1
i

- R6(z2)=: d0+d2 z2+d4z4+ } } } , (3.14)

which is possible since R6 is analytic in |z|<1 and has no zeros there, then

86(z)=d0+d2z2&d� 2 z4&d� 0z6.

Hence, we get the representation

(1�i) - R6(z2)&86(z)
z3 =(d4+d� 2) z+(d6+d� 0) z3+d8z5+ } } }

=c~ 1z+2c~ 3z3+2c~ 5 z5+ } } } .

By calculating the first three coefficients of the series expansion of - R6(z2)
in terms of the coefficients *j of R6 , there follows d0=i - *0 , d2=
i*1 �2 - *0 , d4=*2

1&4*2*0 �8i*0 - *0, and thus

c~ 1=d4+d� 2=
*2

1 - *� 0&4*2*0 - *� 0+4*� 1*0 - *0

8i*0

.
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Taking into consideration the fact that *0=R6(0) and thus |*0 |=1 (note
(2.23)), the assertion follows.

(b) By (3.12) and c&1=c� 1 the existence of the complex T-polynomials
T3 and U1 on E2 is equivalent to

c0 {0 and c2
0&|c1 | 2=0. (3.15)

Similarly to (a) we have now

(1�i) - R4(z)&82(z)
z

=
1

2? |
E2

ei.+z
ei.&z

r(.) d.=c0+2 :
�

k=1

ckzk,

where 82 # P2 with 8*2= &82 , and again we write (1�i) - R4(z)=:
d0+d1 z+d2z2+ } } } and get explicitly 82(z)=d0+i Im[d1]z&d� 0 z2.
Using the representation of R4 one easily calculates d0=i - *0 , d1=i*1 �2
_- *0 , d2=(i - *0�2)(*2 �*0&*2

1 �4*2
0) and thus

c0=
1
2

Re { i*1

- *0
= , c1=

8*0+*2
1&4*0*2

16i*0 - *0

.

Substituting these expressions in (3.15) gives after some straightforward
calculation the assertion.

From Theorem 3.1 one obtains the following corollary, which gives the
reason why we call the polynomials TN and UN&l complex Chebyshev
polynomials.

Corollary 3.2. Let TN and UN&l be complex T-polynomials on El with
leading coefficients :=: e&i� and ;=- R(0) :=: e&i', respectively, and let
{N(.)=e&i(N�2) .TN(ei.) and uN&l (.)=e&i((N&l )�2) .UN&l (ei.). Then the
following statements hold.

(a) The trigonometric polynomial 1
2{N deviates least from zero on El

with respect to the sup-norm among all trigonometric polynomials of degree
N�2 with leading coefficients cos � and sin �, i.e.,

max
. # El }

1
2

{N(.) }= inf
c j , d j # R

max
. # E l } cos � cos

N
2

.+sin � sin
N
2

.

+ :
wN�2x

j=1

cj cos
N&2j

2
.+dj sin

N&2j
2

. } . (3.16)

(b) 1
2 uN&l deviates least from zero on El among all trigonometric poly-

nomials of degree (N&l )�2 with leading coefficients cos ' and sin ' with
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respect to the sup-norm with weight function - |R(.)|, R defined in
(2.16), i.e.,

max
. # E l }

1
2

uN&l (.) - R(.) }
= inf

c j , dj # R
max
. # El }\cos ' cos

N&l
2

.+sin ' sin
N&l

2
.

+ :
w(N&l )�2x

j=1

cj cos
N&l&2j

2
.+dj sin

N&l&2j
2

.+ - R(.)} . (3.17)

(c) Let tN be a minimal trigonometric polynomial of degree N�2 on a
set El of the form (2.15) in the sense of (3.16) and suppose that tN has N+l
extremal points on El . Then zN�2tN(z) is (up to a real multiplicative factor)
a complex T-polynomial on El .

Proof. (a) By (3.3) and (2.17) we have that |{N(.)|�L on El .
Further, we see that |{N(.j)|=|{N(�k)|=L at the boundary points
.1 , ..., .2l of El and at the zeros �1 , ..., �N&l of uN&l , which are all simple
and are lying in Int(El) as we have shown in Theorem 3.1(c). Thus {N has
(at least) N+l extremal points on El . If we cancel out from these N+l
extremal points the boundary points .2j+1, j=1, ..., l&1, recall that
{N(.2j)={N(.2j+1), then the remaining points are N+1 alternating points
of {N on El , since otherwise the trigonometric polynomial {$N would have
too many zeros on an interval of length 2?. Now (3.16) follows from the
well-known Alternation Theorem.

(b) We now consider the system of functions [- |R(.)| } cos((N&l
&2j)�2) ., - |R(.)| } sin ((N&l&2j)�2) .: j=0, ..., w(N&l )�2x], which is
a Haar system on each set E (=)

l :=[. # El : |.&.j |�=, j=1, ..., 2l], where
=>0. Again by (3.3) there hold |- R(.) uN&l (.)|�L on El and
|- R(_j) uN&l (_j)|=L at the N distinct zeros _1 , ..., _N of {N which are
contained in Int(El) and where there is at least one _j in each interval of
El by Theorem 3.1(c). If one considers (the proof of) Theorem 3.1 in detail,
one can see that between two zeros of {N , which are lying in the same
interval, there is exactly one zero of uN&l . Thus, if we cancel the smallest
zero _j in each interval, then it is not very hard to show that the remaining
N&l zeros of {N are alternating points of uN&l on E (=)

l , where = is small
enough that E (=)

l contains all the zeros of {N . This means that again by the
Alternation Theorem uN&l is the minimal trigonometric polynomial with
respect to the sup-norm with weight function - |R(.)| on each of those
sets E (=)

l . The assertion follows now by the limit process = � 0.
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(c) Since t$N is a trigonometric polynomial of degree N�2, it can have
at most N zeros on each interval of the length 2?. Thus by carefully count-
ing the zeros of t$N one gets that all the boundary points of El must be
extremal points of tN . Thus the set of extremal points consists exactly of
.1 , ..., .2l , �1 , ..., �N&l , where �j # Int(El) for j=1, ..., N&l. Let us denote
the value of the sup-norm of 1

2 tN by L. Then by |tN(.j)|=|tN(�k)|=L and
t$N(�k)=0, j=1, ..., 2l and k=1, ..., N&l, we have

t2
N (.)&L2=: R(.) u~ 2

N&l (.),

where u~ N&l is a real trigonometric polynomial of degree (N&l )�2, which
vanishes exactly at the points �1 , ..., �N&l . Hence, the algebraic polyno-
mials zN�2tN(z) and z(N&l )�2u~ N&l (z) are (up to a real multiplicative factor)
complex T-polynomials on El . K

From (the proof of) Corollary 3.2 we get, in addition to Corollary 3.1,
the following characterization of a complex T-polynomial on a set El : An
algebraic selfreciprocal polynomial TN* with leading coefficient :, |:|=1, is
a complex T-polynomial on El if and only if the trigonometric polynomial
{N(.) :=e&i(N�2) .TN(ei.) has exactly N+l extremal points on El , where all
the boundary points of El are among these extremal points.

We now demonstrate the fact that as soon as we know one complex
T-polynomial on a set El we know all complex T-polynomials on El . In
what follows let Tn(x)=cos(n arccos x)=2n&1xn+ } } } and Un&1(x)=
sin(n arccos x)�(sin arccos x)=2n&1xn&1+ } } } , n # N0 , be the classical
Chebyshev polynomials of the first and second kind on the interval
[&1, +1], respectively.

Theorem 3.2. Let N�l be the smallest integer such that there exists
a complex T-polynomial TN(z)=:zN+ } } } , |:|=1, on El and denote
by UN&l (z)=;zN&l+ } } } , ;=- R(0) :, the corresponding complex
T-polynomial of the second kind. Then for all n # N

TnN(z) :=
1

2n&1 (LzN�2)n Tn \TN(z)
LzN�2 +=:nznN+ } } } (3.18)

UnN&l (z) :=
1

2n&1 UN&l (z)(LzN�2)n&1 Un&1 \TN(z)
LzN�2+=:n&1;znN&l+ } } } ,

(3.19)

where L is given as in (3.1), are complex T-polynomials on El , and besides
the polynomials in (3.18), (3.19) there exists no other complex T-polynomial
on El .
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Proof. The fact that TnN and UnN&l , given in (3.18) and (3.19), are
complex T-polynomials on El can be seen in quite the same way as we
proved Lemma 3.1 in [20]. Now we have to show that there are no more
complex T-polynomials on El , i.e., by Theorem 3.1(a) we have to show
that there exists no complex T-polynomial T& of degree &{nN. Assume the
opposite, i.e., suppose that there exists a complex T-polynomial T&

of degree & with (n&1) N<&<nN for an arbitrary n # N"[1]. By
Definition 3.1 and (3.8) we have

T2
&(z)&R(z) U2

&&l (z)=L2
& z&, T&(z)&- R(z) U&&l (z)=O4 (z&)

and

T2
nN(z)&R(z) U2

nN&l (z)=L2
nNznN, TnN(z)&- R(z) UnN&l (z)=O4 (znN).

Multiplying the above quadratic equations we get

(L&LnN)2 z&+nN=(T2
& &RU2

&&l)(T2
nN&RU2

nN&l)

=(T&TnN&RU&&l UnN&l)
2&R(T&UnN&l&TnNU&&l)

2.

(3.20)

Substituting T&=- R U&&l+O4 (z&) and TnN=- R UnN&l+O4 (znN) in the
expression T&UnN&l&TnNU&&l we obtain that T& UnN&l&TnNU&&l=O4 (z&)
and as a consequence by &<nN and (3.20) there follows that
T&TnN&RU&&lUnN&l=O4 (z&). Thus we get �[T&UnN&l&TnNU&&l]=
nN&l and �[T&TnN&RU&&lUnN&l]=nN since these polynomials are
selfreciprocal. Let us now define

TnN&& :=
T&TnN&RU&&l UnN&l

z& # PnN&&

U(nN&&)&l :=
T&UnN&l&TnNU&&l

z& # PnN&&&l ,

then TnN&&(0){0, U(nN&&)&l (0){0, T*nN&&=TnN&& , and U*(nN&&)&l=
U(nN&&)&l . Hence, by (3.20) TnN&& is a complex T-polynomial on El of
degree nN&&<N, which contradicts the assumption that TN is that complex
T-polynomial on El of smallest degree. K

4. ORTHOGONAL POLYNOMIALS WITH PERIODIC
REFLECTION COEFFICIENTS

In this section we assume that f (.; A, W) is integrable and that
L( } ; A, W, *) is a definite functional, which is��in the simplest case��

84 PEHERSTORFER AND STEINBAUER



File: 640J 298726 . By:BV . Date:12:09:96 . Time:11:25 LOP8M. V8.0. Page 01:01
Codes: 2622 Signs: 1519 . Length: 45 pic 0 pts, 190 mm

fulfilled if for example f (.; A, W) is a weight function and *=(1, 1, ..., 1).
Let us start with some preliminaries, which we have shown in [19]: First

of all, there exists a uniquely determined selfreciprocal polynomial
B :=B( } ; A, W, *) # P2a , *=(*1 , ..., *m*) # 2m* , i.e., B=B2a

(*) , which
satisfies the interpolation condition, recall the notation in (2.25),

(VB)(&) (zj)=&*j (za+l�2&w
- R)(&) (zj), &=0, ..., mj&1, j=1, ..., m*,

(4.1)

and the ``zero condition''

B(z)+za+l�2&w(W(z)�- R(z))
A(z) } z=0

# R.

Further, in [19, Theorem 2.1] we have shown that the Stieltjes transform
takes the form

L \x+z
x&z

; A, W, *+=
B(z)+za+l�2&w(W(z)�- R(z))

A(z)

=: F(z; A, W, *), z # C"(1E l _ [zj : *j=&1]).

(4.2)

Thus if L( } ; A, W, *) is positive definite then F is the Carathe� odory
function.

Orthogonal polynomials with respect to a definite functional L( } ; A,
W, *) can be characterized in the following way:

Theorem 4.1 (Peherstorfer and Steinbauer [19]). Let the polynomials
R, V, W, A, B( } ; A, W, *)=: B and the definite functional L( } ; A, W, *) be
given and let Pn be a polynomial of degree n.

(a) There holds a+l�2&w�2v&l and if further n�a+l�2&w then
the following two properties are equivalent:

(a.i) Pn is an orthogonal polynomial with respect to L( } ; A, W, *),
i.e., L(x&jPn ; A, W, *)=0 for j=0, ..., n&1.

(a.ii) There exists a polynomial Qn+l&2v of degree n+l&2v which
satisfies together with Pn the following system

(VQn+l&2v)(&) (zj)=*j (- R Pn)(&) (zj),

(4.3)
&=0, ..., mj&1, j=1, ..., m*

V(z) Qn+l&2v(z)&- R(z) Pn(z)=O(zn&(a+l�2&w)), as z � 0

V(z) Q*n+l&2v(z)&- R(z) Pn*(z)=O(zn&(a+l�2&w)+1), as z � 0.
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If there exists such a polynomial Qn+l&2v then it is of the form

Qn+l&2v(z)=&
0n(z) A(z)+Pn(z) B(z)

za+l�2&w , (4.4)

where 0n denotes the polynomial of the second kind of Pn with respect to
L( } ; A, W, *).

(b) If n�a+l�2+v and if Pn and A have at most a simple zero in
common (this is no loss of generality as we have pointed out in [19,
Remark 2.3(a)]) then we have the following equivalence:

(b.i) L(x&jPn ; A, W, *)=0 for j=0, ..., n&1 and L(x{Pn ; A,
W, *){0 for at least one { # N.

(b.ii) There exists a polynomial Qn+l&2v # Pn+l&2v (and if this
polynomial exists then it is of the form (4.4)) and a polynomial g(n) # Pl&1&p

with g(n)(0){0, where p # N0 gives the order of the zero of Pn at z=0, such
that

W(z) P2
n(z)&V(z) Q2

n+l&2v(z)=zn+p&(a+l�2&w)A(z) g(n)(z) (4.5)

and (``sign-condition'')

V(zj) Qn+l&2v(zj)=*j - R(zj) Pn(zj), j=1, ..., m* (4.6)

VQn+l&2v

- R Pn
} z=0

=1, V(0) Q*n+l&2v(0)=- R(0) Pn*(0). (4.7)

Remark 4.1. (a) Indeed, in [19] we have even shown a ``stronger''
version of Theorem 4.1, which holds also if L( } ; A, W, *) is not
necessarily definite and which is the version we applied in the proofs of
Theorem 3.1 and Corollary 3.1.

(b) The assumption L(x{Pn ; A, W, *){0 for a { # N in
Theorem 4.1(b) is equivalent to the fact that the reflection coefficients (an)
are not all zero from a certain index onward (compare e.g. [20,
Theorem 2.1] and Proposition 5.1 below). Thus the equivalence in
Theorem 4.1(b) holds if infinitely many reflection coefficients are different
from zero, which is always fulfilled since R has only simple zeros by
assumption (compare again Proposition 5.1 and Theorem 5.1).

Let now (Pn) be the sequence of orthogonal polynomials with respect
to the definite functional L( } ; A, W, *). Then by Theorem 4.1 there exists
a uniquely determined sequence of corresponding polynomials
(Qn+l&2v)n�a+l�2&w . If the Pn 's are monic, and this is only a question of
normalization, the Qn+l&2v's fulfill the same recurrence relation as the Pn 's:
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Lemma 4.1. Let n0 :=a+l�2&w and let (Qn+l&2v)n�n0
be the sequence

of polynomials defined in (4.4) associated to the monic orthogonal polyno-
mials Pn(z)=zn+ } } } with respect to L( } ; A, W, *). Then there holds for
all n�n0

Q(n+1)+l&2v(z)=zQn+l&2v(z)&a� nQ*n+l&2v(z)=Kz(n+1)+l&2v+ } } } , (4.8)

where an=&Pn+1(0) (compare (1.5)) and where K is the leading coefficient
of Qn 0+l&2v .

Proof. From (4.4) we get

Q*n+l&2v(z)=
0n*(z) A(z)&Pn*(z) B(z)

za+l�2&w , n�n0

and thus by (1.1) and (1.10)

za+l�2&wQ(n+1)+l&2v(z)=&0n+1(z) A(z)&Pn+1(z) B(z)

=z(&0n(z) A(z)&Pn(z) B(z))&a� n(0n*(z) A(z)

&Pn*(z) B(z))

=za+l�2&w(zQn+l&2v(z)&a� n Q*n+l&2v(z)). K

We now state our main result which gives, under the assumption that
there exists a complex T-polynomial, explicit representations of the
orthogonal polynomials with respect to L( } ; A, W, *) and says in
particular that the reflection coefficients of these polynomials are (pseudo-)
periodic. In this context we call a complex sequence (an) (pseudo-)periodic
with period N # N and preperiod n0 # N0 if it satisfies an+N=+an for all
n�n0 with +=1 (|+|=1).

Theorem 4.2. Let the definite functional L( } ; A, W, *) be given as in
(2.26) and suppose that there exists a complex T-polynomial TN(z)=
:zN+ } } } , |:|=1, on El . Further, let Pn(z)=zn+ } } } , n # N0 , be the monic
orthogonal polynomials with respect to L( } ; A, W, *) and let Qn+l&2v ,
n�a+l�2&w, be given as in (4.4). Then there hold with n0 :=a+l�2&w:

(a) For all & # N and n�n0

2:&Pn+&N(z)=T&N(z) Pn(z)+V(z) U&N&l (z) Qn+l&2v(z)
(4.9)

2:&Q(n+&N)+l&2v(z)=T&N(z) Qn+l&2v(z)+W(z) U&N&l (z) Pn(z),

where T&N and U&N&l are given as in Theorem 3.2.
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(b) The reflection coefficients (an) of the Pn 's satisfy

an+N=:2an for all n�n0 . (4.10)

Proof. (a) We prove the assertion by applying Theorem 4.1(a). Thus
we first have to show that the degrees of the polynomials at the right-hand
side in (4.9) are n+&N and n+&N+l&2v, respectively. To see this consider
that by (3.8), (4.2), and (4.4) we have

za+l�2&w[T&NPn&VU&N&lQn+l&2v](*)
n+&N

=za+l�2&w[T&N Pn*&VU&N&lQ*n+l&2v]

=VU&N&lA[Pn*F( } ; A, W, *)&0n*]+O4 (z&N+a+l�2&w)

=O(zn+1)+O4 (z&N+a+l�2&w),

since Pn*(z) F(z; A, W, *)&0n*(z)=O(zn+1) by [9, (18.11)] or by [20,
Theorem 2.1], which implies T&N(0) Pn*(0)&V(0) U&N&l (0) Q*n+l&2v(0)=0.
This last identity together with T&N(0) Pn*(0){0 gives

[T&N Pn+VU&N&lQn+l&2v](*)
n+&N (0)

=T&N(0) Pn*(0)+V(0) U&N&l (0) Q*n+l&2v(0){0

and thus

�[T&NPn+VU&N&l Qn+l&2v]=n+&N.

The second degree assertion can be shown in the same way.
Now from the two identities

V(T&N Qn+l&2v+WU&N&lPn)\- R(T&N Pn+VU&N&lQn+l&2v)

=(T&N\- R U&N&l)(VQn+l&2v\- R Pn)

V[T&N Qn+l&2v+WU&N&lPn]*\- R[T&NPn+VU&N&lQn+l&2v]*

=(T&N\- R U&N&l)(VQ*n+l&2v\- R Pn*)

and from (3.8) and (4.3) it follows that the polynomials at the right-hand
side of (4.9) fulfill, in the same way as Pn+&N and Q(n+&N)+l&2v , a system
of the form (4.3). Thus the identities in (4.9) follow from Theorem 4.1(a)
and from the definiteness of L( } ; A, W, *), where the normalization factor
2:& can be obtained by comparing the leading coefficients with the help of
(4.3), (4.8), and (3.8).
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(b) By (4.9), (1.1), and (4.8) we have for n�n0

P(n+1)+N=
1

2:
[TN(zPn&a� nPn*)+VUN&l (zQn+l&2v&a� n Q*n+l&2v)]

=zPn+N&a� n
:�
:

P*n+N (again by (4.9)),

i.e., an+N=(:�:� ) an=:2an . K

Theorem 4.2(a) gives a tool to generate all the orthogonal polynomials
Pn , n�n0+N, with respect to L( } ; A, W, *) in an explicit way from the
finitely many polynomials Pm and 0m , m=n0 , ..., n0+N&1. Note that the
polynomials Qm+l&2v are given by (4.4) and the sequence of complex
T-polynomials (T&N)& # N and (U&N&l)& # N by Theorem 3.2.

From Theorem 4.2(b) we see that the reflection coefficients of the Pn 's
orthogonal with respect to L( } ; A, W, *) are periodic if there exists a
monic complex T-polynomial TN on El and they are pseudo-periodic if
the leading coefficient of TN is :=ei#, # # (0, 2?). Note that the (pseudo-)
periodicity of the reflection coefficients only depends on the set El and not
on A, W, or *! Roughly speaking, in Section 5 (compare also Theorem 4.4)
we will see that there holds also the reversion of this fact; hence, the
(pseudo-)periodicity of the reflection coefficients is equivalent to the existence
of a complex T-polynomial on a set El .

We now give some further recurrence-relations for the case that there
exists a complex T-polynomial TN(z)=:zN+ } } } on El .

Corollary 4.1. Let the assumptions of Theorem 4.2 be fulfilled. Then
there hold:

(a) For & # N0 and n�a+l�2&w we have

P(&+2) N+n(z)=
1
:

TN(z) P(&+1) N+n(z)&
L2zN

4:2 P&N+n(z)

Q((&+2) N+n)+l&2v(z)=
1
:

TN(z) Q((&+1) N+n)+l&2v(z)

&
L2zN

4:2 Q(&N+n)+l&2v(z),

where the constant L is given as in (3.1).
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(b) For & # N and n�(a+l�2&w)+&N we have

L2
& z&N

2:& Pn&&N(z)=T&N(z) Pn(z)&V(z)U&N&l (z) Qn+l&2v(z)

L2
& z&N

2:& Q(n&&N)+l&2v(z)=T&N(z) Qn+l&2v(z)&W(z) U&N&l (z) Pn(z),

where T&N and U&N&l are the complex T-polynomials on El given in
Theorem 3.2 and L& is the corresponding constant from (3.1).

Proof. (a) From (4.9) one obtains

P(&+2) N+n=
1

2: _TNP(&+1) N+n+VUN&l
1

2:

_(TNQ(&N+n)+l&2v+WUN&lP&N+n)&
=

1
2: _TNP(&+1) N+n+

1
2:

RU2
N&lP&N+n

+
1

2:
TN(2:P(&+1) N+n&TNP&N+n)&

=
1
:

TNP(&+1) N+n&
L2zN

4:2 P&N+n (by (3.1)).

The second identity can be shown in the same way.

(b) Similar to the proof of Theorem 4.2 one obtains that the poly-
nomials at the right-hand sides have zeros at z=0 at least of multiplicity
&N and a degree of n, resp. n+l&2v. Further, the polynomials (T&NPn&
VU&N&lQn+l&2v)�z&N and (T&N Qn+l&2v&WU&N&lPn)�z&N satisfy, in the
same way as the polynomials Pn&&N and Q(n&&N)+l&2v , a system of the
form (4.3) and thus they coincide up to a constant factor with Pn&&N and
Q(n&&N)+l&2v by Theorem 4.1(a) and the definiteness of L( } ; A, W, *).
From (4.8), (4.9) (writing Pn=P(n&&N)+&N) and (3.1) one can derive that
the leading coefficient of the polynomials at the right-hand sides is L2

& �2:&,
resp. KL2

& �2:& (note Lemma 4.1), and the assertion follows. K

The next corollary gives explicit representations of the polynomials g(n)

from (4.5). As we will show in a forthcoming paper, these polynomials play
an important role in describing the associated polynomials, defined in
(1.12) and (1.13).
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Corollary 4.2 Let the assumptions of Theorem 4.2 be fulfilled and let
p # N0 be the order of the zero of Pn at z=0. Then for n�a+l�2+v the
polynomial g(n) , given as in (4.5), can be represented as

g(n)(z)=2: dn
P (n)

N (z)&0 (n)
N (z)

z pUN&l (z)
, dn from (1.11). (4.11)

Further, there holds

g(n+N)(z)=
d (n)

N

:2 g(n)(z), where d (n)
N := `

N&1

j=0

(1&|an+j |
2). (4.12)

Proof. With the help of (4.5) and (4.9) we get

2:(Q(n+N)+l&2vPn&Qn+l&2vPn+N)=UN&l (WP2
n&VQ2

n+l&2v)

=UN&l zn+p&(a+l�2&w)Ag(n) .

On the other hand, we have by (4.4)

za+l�2&w(Q(n+N)+l&2vPn&Qn+l&2vPn+N)=A(Pn+N 0n&Pn0n+N).

From these two identities there follows

UN&l g(n)=
2:

zn+p (Pn+N0n&Pn0n+N)=
2: dn

z p (P (n)
N &0 (n)

N ),

where we have used (1.11), (1.15), and (1.16) for the last identity.
In order to prove (4.12) let us consider that by Theorem 4.2(b) the poly-

nomials P (n)
N , 0 (n)

N are generated by the reflection coefficients an , ..., an+N&1

and the polynomials P(n+N)
N , 0 (n+N)

N by :2an , ..., :2an+N&1 , where |:|=1.
From [9, (7.4) and (7.9)] we have the relations

P (n+N)
N =

1+:� 2

2
P (n)

N +
1&:� 2

2
0 (n)

N

and

0(n+N )
N =

1&:� 2

2
P (n)

N +
1+:� 2

2
0 (n)

N

and thus

P (n+N)
N &0 (n+N)

N =
1
:2 (P (n)

N &0 (n)
N ).

Now the assertion follows from (4.11); note thereby that g(n)(0){0 and
g(n+N)(0){0. K
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Let us point out that in what follows it suffices to consider the case of
a monic complex T-polynomial TN(z)=zN+ } } } , i.e., :=1.

Remark 4.2. Let the set El=� l
j=1 [.2j&1 , .2j], the polynomials R, W,

A, and the functional L( } ; A, W, *) be given. Then, choosing an arbitrary
: # C with |:|=1, the functional L( } ; A� , W� , *) is again of the form (2.26),
where now

E� l := .
l

j=1

[.̂2j&1 , .̂2j], .̂j :=.j+arg d, where d :=:2�N

R� (x) :=d lR \z
d+ , A� (z) :=d aA \z

d+ , W� (z) :=d wW \z
d+ .

In Remark 3.1 we have shown that there exists a complex T-polynomialTN(z)
=:zN+ } } } on El if and only if there exists a monic complex T-polynomial
T� N(z)=zN+ } } } on E� l . Further, the monic orthogonal polynomials (Pn)
with respect to L( } ; A, W, *), generated by the reflection coefficients (an),
and the monic orthogonal polynomials (P� n) with respect to L( } ; A� , W� , *),
generated by the reflection coefficients (ân), are related by

P� n(z)=d nPn \z
d+=zn+ } } } , n # N0 ,

and there holds

ân=d &(n+1)an , n # N0 ,

where now by Theorem 4.2(b) ân+N=ân for all n�a+l�2&w.

In order to prove Theorem 4.3 we first need the following lemma, which
follows by quite straightforward calculations from (1.15)�(1.18).

Lemma 4.2. Let (an) be a sequence of periodic reflection coefficients,
|an |{1, with period N # N and preperiod n0 # N0 . Further, let the polyno-
mials R� (n) , A� (n) , B� (n) , n�n0 , be given as in (2.6). Then we have the identities

R� (n)=d2
nz2n _(P (n)

N +0 (n)
N +P (n)

N *+0 (n)
N *)2

&16zN `
N&1

j=0

(1&|an+j |
2)&

A� (n)=P2
n(P (n)

N *&0 (n)
N *)+PnPn*(P (n)

N *+0 (n)
N *

&P (n)
N &0 (n)

N )+Pn*
2(0 (n)

N &P (n)
N )
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B� (n)=Pn*0n*(0 (n)
N &P (n)

N )+Pn 0n(0 (n)
N *&P (n)

N *)

+1
2(P (n)

N +0 (n)
N &P (n)

N *&0 (n)
N *)

_(0nPn*&0n*Pn)

P (n)
N +0 (n)

N +P (n)
N *+0 (n)

N *=P (&)
N +0 (&)

N +P (&)
N *+0 (&)

N *,

for all &�n0 .

The following theorem gives now explicit representations of the polyno-
mials R, A, B( } ; A, W, *) and TN , where TN is monic, in terms of
orthogonal polynomials (compare [8, Theorem X] and our considerations
in Section 2).

Theorem 4.3. Let the assumptions of Theorem 4.2, where we now suppose
that :=1, be fulfilled and let B :=B( } ; A, W, *) be the polynomial given in
(4.2). Then, with R� (n) , A� (n) , B� (n) from (2.6) and dn from (1.11), there hold for
all n, &�n0 :=a+l�2&w,

RU2
N&l=

R� (n)

4d2
nz2n =

1
4 _(P (&)

N +0 (&)
N +P (&)

N *+0(&)
N *)2

&16zN `
&+N&1

j=&

(1&|aj |
2)&

VUN&lA=
A� (n)

2dnzn&n0
=

1
2dn0

[P2
n0

(P (n0)
N *&0 (n0)

N *)+Pn0
P*n0

(P (n0)
N *+0 (n0)

N *

&P(n0)
N &0 (n0)

N )+Pn0
*2(0(n0)

N &P (n0)
N )]

VUN&lB=
B� (n)

2dnzn&n0
=

1
2dn0

[P*n0
0*n0

(0 (n0)
N &P (n0)

N )+Pn0
0n0

(0(n0)
N *&P(n0)

N *)

+
1
2

(P(n0)
N +0 (n0)

N &P(n0)
N *&0(n0)

N *)(0n0
P*n0

&0*n0
Pn0

)]

TN=
1

2dnzn (Pn*0n+N+0n*Pn+N+0nP*n+N+Pn0*n+N)

=
1
2

(P(&)
N +0(&)

N +P(&)
N *+0(&)

N *)

L2=4 `
&+N&1

j=&

(1&|aj |
2).
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Proof. From the characterization Theorem 2.1 in [20], which charac-
terizes orthogonal polynomials with respect to a linear functional L with
the help of the Stieltjes transform F(z)=L((x+z)�(x&z)), one can obtain
by using (1.11), (1.17), and (1.18) that a representation of the form (1.14)
even holds in the definite case |an |{1. Hence, by Theorem 4.2(b),
(2.5)�(2.8), and (4.2) we have the identity

VUN&lB+za+l�2&w
- R UN&l

VUN&lA
=

\(1�2ds0
) B� (s 0)+zs0 - R� (s0) �4d2

s0
z2s0

\(1�2ds 0
) A� (s 0)

, (4.13)

where s0 denotes the exact preperiod of the period sequence (an), i.e.,
as 0+N&1 {as0&1 (a&1 :=1 if s0=0); note that R� (s0) has a zero at z=0 of
exact order 2s0 and leading coefficient 4d2

s 0
by Lemma 4.2. Considering this

equation for z=ei., . # El , and calculating the real parts one obtains
(compare also the proof of Lemma 3.4 in [19])

za+l�2&w
- R UN&l

VUN&lA
=

zs0 - R� (s0) �4d2
s0

z2s0

\(1�2ds0
) A� (s0)

. (4.14)

Since the polynomials R, V, UN&l , A, R� (s0) �z2s0, and A� (s 0) do not vanish at
z=0 by definition and by (2.6), compare also Lemma 4.2, we have

n0=a+
l
2

&w=s0 is the exact preperiod. (4.15)

In what follows we will write n0 instead of s0 . By (4.14) and (4.15) the
polynomial R� (n0) �z2n0 must vanish at the zeros of R and there are no other
square-root zeros at the right-hand side, i.e., we can write R� (n0) �4d2

n0
z2n0=:

RU� 2, where U� # PN&l . By the representation of R� (n0) in Lemma 4.2 and by
Theorem 3.1(a), i.e., the uniqueness of complex T-polynomials, there
follows that U=UN&l . Thus we get

RU2
N&l=

R� (n 0)

4d2
n0

z2n0
, (4.16)

(note that by (3.1) and Lemma 4.2 both sides in (4.16) are monic polyno-
mials), which is by Lemma 4.2 and (2.7) the first assertion of the theorem.
As a consequence there even follows the representation of the complex
T-polynomial TN , compare also (1.15)�(1.18), and of the constant L. With
the help of (4.13), (4.15), and (4.16) we further get

VUN&lA=\
1

2dn 0

A� (n0) and VUN&lB=\
1

2dn0

B� (n0) . (4.17)

Again by Lemma 4.2 and (2.7) it remains to show that these identities hold
with the positive sign.
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By (4.9) we can write

Q� n+N :=VUN&lQn+l&2v=2Pn+N&TNPn , n�n0+N.

Using the representations of RU2
N&l and TN in this theorem we get after

some tedious but straightforward calculation with the help of the identities
given in (1.11), (1.15), (3.1) and Lemma 4.2 that

U2
N&lRP2

n&Q� 2
n+N=zn&n 0

1
2dn0

A� (n 0) } 2dn(P (n)
N &0 (n)

N )

=zn+p&n0
1

2dn 0

A� (n0) } UN&l g(n) (by Corollary 4.2).

Comparing this equality with (4.5), i.e., U2
N&lRP2

n&Q� 2
n+N=zn+p&n0 VUN&lA

} UN&lg(n) , and recalling Remark 4.1(b), the first positive sign in (4.17)
follows and by (4.13) also the second one. K

By combining Theorem 4.2 and Theorem 4.3 with the result of
Geronimus [8, Theorem X] mentioned in the Introduction, we get

Theorem 4.4. Let (an) with |an |<1 be the reflection coefficients of the
orthogonal polynomials (Pn). Then (an) is periodic from a certain index n0

onward if and only if (Pn) is orthogonal with respect to a definite functional
of the form (2.26) and on El there exists a monic complex T-polynomial.

Proof. The necessity part follows from [8, Theorem X]��recall also our
statements in Section 2��where the fact that there exists a monic complex
T-polynomial can be derived from Theorem 4.3 (see also the assertions of
the following Section 5: note that either an=0 for all n�n0 , which is the
situation of Proposition 5.1 below, or infinitely many an satisfy 0<|an |<1;
in the second case all the assumptions (2.16)�(2.21) follow from the
positive definiteness of the orthogonality measure). The sufficiency part is
Theorem 4.2. K

Let us recall that (Pn) orthogonal with respect to a positive definite func-
tional of the form (2.26) means that (Pn) is orthogonal with respect to the
weight function - &R(.)�A(.)+ eventually point measures at the zeros
of A.

5. DEFINITE FUNCTIONALS ASSOCIATED WITH
PERIODIC REFLECTION COEFFICIENTS

In this section we determine all definite functionals with respect to which
polynomials generated by periodic reflection coefficients are orthogonal.
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Let us recall that by the definiteness of the functional the reflection coef-
ficients (an) satisfy |an |{1 for all n # N0 . The positive definite case |an |<1
(with the additional assumption |an |>0) has been treated and solved by
Geronimus [8].

Since in the following we will have to distinguish between the case
that an=0 for n�n0 and an {0 for infinitely many n (compare e.g.
Remark 4.1(b)) let us consider some aspects of the first case, which lead to
orthogonal polynomials on the whole unit circle, which can be considered
as a generalization of the Bernstein�Szego� polynomials.

Proposition 5.1. Let Pn0
(z) :=>q

j=1 (z&zj) >n 0
j=q+1 (z&zj ), where

|zj |>1 for j=1, ..., q and |zj |<1 for j=q+1, ..., n0 , and let the trigono-
metric polynomial A be given by

A(.) :=e&in0.Pn0
(ei.) P*n0

(ei.)=|Pn0
(ei.)| 2. (5.1)

Then the polynomials

Pn(z) :=zn&n 0Pn0
(z), n�n0 , (5.2)

have the 2? orthogonality property

1
2? |

2?

0
e&ik.Pn(ei.)

d.
A(.)

& :
q

j=1

res \zn&k&1

P*n0
(z)

, zj+=0

for k=.. . , &2, &1, 0, 1, ..., n&1. (5.3)

Proof. Since for k=.. ., &2, &1, 0, 1, ..., n&1

1
2? |

2?

0
e&ik.(ei(n&n0) .Pn0

(.))
d.

A(.)
=

1
2?i ||z|=1

zn&k&1

P*n0
(z)

d.

= :
q

j=1

res \zn&k&1

P*n0
(z)

, zj+ ,

where the last equality follows by the Residuum Theorem, the assertion is
proved. K

Let us note that (5.2) implies by (1.1) that

an0
=an 0+1= } } } =0. (5.4)

If Pn 0
has all its zeros in |z|<1, i.e., q=0, then the polynomials Pn are

the well-known Bernstein�Szego� polynomials (see e.g. [4; 24, p. 31]).
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Concerning the connection to our functional L( } ; A, W, *), let us point
out that the orthogonality condition (5.3) is nothing other than

L(x&kPn ; A, W, *)=0 for k=.. ., &2, &1, 0, 1, ..., n&1, (5.5)

where

E1=[0, 2?], R(z)=(z&1)2, W(z)=i(1&z), A defined in (5.1)

and * given by, with j # [1, ..., n0],

*j={+1
&1

if |zj |<1, i.e., j # [q+1, ..., n0]
if |zj |>1, i.e., j # [1, ..., q]

.

Thus the orthogonality property (5.5) is a direct consequence of our
general results [19, Theorem 2.2 and Remark 2.3], but the above given
proof seems to be worth mentioning.

Now we consider the general case of reflection coefficients (an) satisfying
for a n0 # N0 , N # N, and : # C with |:|=1,

an+N=:2an for n�n0 and |an |{1, n # N0 , (5.6)

where n0 is the exact preperiod, i.e.,

an 0&1 {an0&1+N (a&1 :=1 if n0=0). (5.7)

Note that we also allow the special case (5.4), treated in Proposition 5.1.
As usual, we denote by Pn and 0n the monic orthogonal polynomials, resp.
the polynomials of the second kind generated by (1.1) and (1.10) with this
sequence (an). Then we define the following polynomials

TN :=
1
2

(:P (n0)
N +:0 (n0)

N +:� P(n 0)
N *+:� 0 (n 0)

N *)=:zN+ } } } +:� (5.8)

R :=T2
N&4zN `

N&1

j=0

(1&|an 0+j |
2)=:2z2N+ } } } +:� 2 (5.9)

A :=
1

dn 0

(:� Pn 0
P*n0+N&:P*n0

Pn 0+N) (5.10)

B :=
1

2dn0

(:P*n 0
0n 0+N&:0*n0

Pn0+N&:� 0n0
P*n 0+N+:� Pn0

0*n 0+N). (5.11)
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Finally, we define the function

F(z) :=
B(z)+zn 0 - R(z)

A(z)
. (5.12)

By (5.7), (5.9), and (5.10) we have R(0){0 and A(0){0, thus F is
analytic at z=0 and can be expanded in a power series

F(z)=: c0+2 :
�

j=1

c j z j.

Let L be the corresponding linear functional defined as in (1.3) with the
moment sequence (c j), i.e.,

L(x&j)=cj and c j=c&j , j # Z. (5.13)

Then there holds

Theorem 5.1. Let (Pn) and the polynomials of the second kind (0n) be
generated by (1.1) and (1.10), respectively, with the periodic sequence of
reflection coefficients (an), given as in (5.6). Then the Pn 's are orthogonal
with respect to the functional L from (5.13), i.e.,

L(x&jPn)=0 for j=0, ..., n&1. (5.14)

Proof. Let us first assume the more interesting case that infinitely many
an 's are unequal to zero. Then we prove the theorem by using Theorem 2.1
in [20], which is a general characterization theorem for orthogonal poly-
nomials with respect to a linear functional of the form (1.3) and which says
that the orthogonality property (5.14) is equivalent to the system

{Pn(z) F(z)+0n(z)=O(zn)
Pn*(z) F(z)&0n*(z)=O(zn+1),

as z � 0. (5.15)

We show that the conditions in (5.15) are fulfilled for all n�n0+N, i.e.,
(Pn)n�n0+N are orthogonal polynomials with respect to F. The ortho-
gonality properties of the Pn 's, n=0, ..., n0+N&1, follow for example
from [9, Theorem 4.1 and Theorem 6.1].

Let us define

Qn+N :=2:Pn+N&TNPn .

As in the proof of Theorem 4.3 one can show that

R(z) P2
n(z)&Q2

n+N(z)=zn+p&n0 A(z) g(n)(z), n�n0+N, (5.16)
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where p denotes the order of the zero of Pn at z=0 and where (compare
with Corollary 4.2)

g(n)(z)=2:dn(P (n)
N&p&0 (n)

N&p) # PN&p&1 , g(n)(0){0.

Further, one gets by some tedious but straightforward calculation that

Qn+N(z)=&
0n(z) A(z)+Pn(z) B(z)

zn0
, n�n0 , (5.17)

and

Qn+N

- R Pn
} z=0

=
Q*n+N(0)

- R(0) Pn*(0)
=1. (5.18)

Now the system (5.15) follows from (5.16)�(5.18) by comparing coefficients
(for this compare also our proofs of Theorem 2.2 and Theorem 3.10 in
[19]).

If an 0+j=0 for all j # N0 then we are in the situation of Proposition 5.1
and we have N=1 and :=1. Further, R(z)=(1&z)2, A(z)=(1�dn 0

)
(1&z) Pn 0

(z) P*n0
(z), B(z)=(1�2dn 0

)(1&z)(0*n 0
(z) Pn0

(z)&0n0
(z) P*n0

(z)),
and with the help of (1.11) we get

F(z)=
0*n0

(z)
P*n0

(z)
,

which is the right Stieltjes transform by [20, Theorem 2.1]; see also [19,
Remark 2.3(c)] (for the orthogonality properties of the lower degree poly-
nomials Pn , n=0, ..., n0&1, again see e.g. the Proof of Theorem 6.1 and
Theorem 4.1 [9]). K

Note that the polynomials R and A need not satisfy all the conditions
(2.16)�(2.20) and thus in general the function F, defined in (5.12), is not
necessarily of the form (4.2). For example, if we consider the constant
sequence of reflection coefficients (an) with |a|>1 then the polynomial R

from (5.9) is of the form R(z)=(1&z)2+4 |a| 2 z and has zeros outside the
unit circumference. On the other hand, the sequence (an) with a0=1+i,
a1=2&3i, and an= 1

2 for n�2 yields polynomials R and A, which satisfy
(2.15)�(2.21) for the set E1=[1.047, 5.236], although |a0 |, |a1 |>1.

Now the following question arises. Given a union of intervals El on
which there exists a complex T-polynomial, how many periodic sequences
of reflection coefficients are generated by polynomials orthogonal on El

with respect to nonnegative weight functions of the form |- R(.)�A(.)|?

99ORTHOGONAL POLYNOMIALS, II



File: 640J 298741 . By:BV . Date:12:09:96 . Time:11:25 LOP8M. V8.0. Page 01:01
Codes: 2399 Signs: 1246 . Length: 45 pic 0 pts, 190 mm

In the case of the whole unit circumference, i.e., El=E1=[0, 2?], we know
that there is only one such periodic sequence, the sequence an=0 for
n # N0 . But as we shall see this is a real exceptional case because in all
other cases there is an infinite set of periodic sequences. Let us demonstrate
this by the following example.

Example 5.1. (a) Let (Pn) be generated by the sequence of reflection
coefficients

an :=a for n # N0 , with |a|<1.

Then by Theorem 5.1 (Pn) is orthogonal with respect to the positive func-
tional L( } ; A, R, *), where

T1(z)=z+1, R(z)=T2
1(z)&4(1&|a| 2) z,

A(z)=(1+a� )&(1+a) z, B(z)=a� +az

(possible common zeros of R and A lead to the splitting R=VW). Hence
(take a look at R and recall that T1 is independent of a), if we fix a
# # (0, 1) we obtain that for every

a # S1 :=[a # C: |a|=#]

the polynomials (Pn) generated by an=a, n # N0 , are orthogonal on the
same interval

[:, 2?&:]+eventually a point measure at
1+a�
1+a

where

e\i: :=1&2#2\2i# - 1&#2.

(b) The case of two intervals can also be treated without problems.
In fact, let

a2n :=a0 and a2n+1 :=a1 with |a0 |<1 and |a1|<1. (5.19)

Then by (5.8)�(5.11),

T2(z)=z2+2 Re[a1 a� 0] z+1,

(5.20)R(z) :=R(z)=T2
2(z)&4(1&|a0 | 2)(1&|a1 | 2),

A(z) :=A(z)=(1+a� 1)&2i(Im[a0]+Im[a1a� 0]) z&(1+a1) z2,

B(z) :=B(z)=a1z2+2 Re[a0] z+a� 1 .
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Thus for given #1 , #2 # (0, 1) we obtain that for every (a0 , a1) # S2, where

S2 :=[(a0 , a1) # C_C: |a0 |<1, |a1 |<1, (1&|a0 | 2)(1& |a1 |2)=#1

and Re[a1a� 0]=#2],

the polynomials (Pn) generated by a sequence of the form (5.19) with
(a0 , a1) # S2 are by (5.20) all orthogonal on the same set of two intervals
E2=[. # [0, 2?]: e&2i.R(ei.)�0], where at the zeros of A point measures
may appear.

In view of the above example we see that there is an infinite set of
periodic sequences associated with one system of intervals El in contrast to
the case of the whole unit circumference. This has consequences for
asymptotic considerations because if we want to get asymptotic results for
polynomials pn( } ; w) orthogonal on El with respect to the weight function
w with the help of polynomials orthogonal on El with respect to - &R�A
we will have to look first to which sequence of periodic reflection coef-
ficients the reflection coefficients of the pn( } ; w)'s will converge. Naturally
this problem does not appear if one considers asymptotics of orthogonal
polynomials with limit periodic reflection coefficients since the corresponding
periodic sequence is given in advance.
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